

INSTITUTO DE FÍSICA "GLEB WATAGHIN"

PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

2° SEMESTRE DE 2021

FI204 – Tópicos da Física da Matéria Condensada I - Introdução à Teoria Quântica de Computação e Informação

Turma

Α

Créditos

4

Horário

Terça – 19h às 21h Quinta – 19h às 21h

Docente

Marcos Cesar de Oliveira

Pre-Requisitos

_

Objetivos

Esse novo campo da ciência combina recursos interdisciplinares da física, ciência da informação e ciência da computação, promovendo uma grande interação entre estas áreas do conhecimento, além de propor possibilidades tecnológicas sem precedentes. O objetivo deste curso é fornecer, aos estudantes de pósgraduação e graduação, noções básicas introdutórias sobre teoria de computação e informação quânticas, permitindo-os a ler artigos da área e de se aprofundarem nos assuntos relevantes para seus ramos específicos de interesse.

Ementa:

- 1. Fundamentos da Teoria Quântica
 - Estados, Observáveis e Medição
 - Mecânica Quântica sem vetores de estado O operador densidade
 - Estados emaranhados
- 2. Introdução à Ciência da Computação
 - Máquina de Turing, modelos de circuitos
 - Universalidade em operações lógicas
 - Problemas de decisão e complexidade computacional
- 3. Computação Quântica

Instituto de Física Gleb Wataobio

INSTITUTO DE FÍSICA "GLEB WATAGHIN"

PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

- Conceitos básicos circuitos e universalidade
- Operações quânticas, precisão na aproximação de operações unitárias
- Aplicações de circuitos em comunicação quântica
- Simulação de sistemas quânticos
- 4. Algoritmos
 - Problema de Deutsch e Paralelismo Quântico
 - Problema de Deutsch-Jozsa
 - Problema de Bernstein-Vazirani e complexidade exponencial
 - Problema de Simon Período de função
 - Elementos da teoria dos números e a aritmética modular
 - Transformada de Fourier Quântica
 - Algoritmo de Shor (Decomposição em potências de fatores primos)
 - Algoritmo de Busca de Grover
- 5. Ruído
 - Sistemas quânticos abertos e operações quânticas
 - Operações quânticas e equações mestras
- 6. Estudo de propostas de implementação Física de Computação Quântica
 - Sistemas ópticos
 - Sistemas supercondutores
 - Sistemas de Íons Aprisionados
- 7. Teoria de Correção de erros
 - Códigos de correção de erros: Clássicos
 - Códigos de correção de erros: Quânticos
 - Introdução à computação quântica tolerante a falhas
- 8. Criptografia Quântica
 - Criptografia clássica e segurança cibernética
 - Protocolos de distribuição de chaves
 - Criptografia quântica e distribuição de chaves quânticas
- 9. Tópicos complementares em computação quântica
 - Computação adiabática, quantum annealing e problemas de optimização
 - Quantum Machine Learning
 - Aplicações Práticas
 - Teoria de informação quântica

Conteúdo Programático:

-

Bibliografia

[1] R. P. Feynman, Feynman Lectures on Computation, ed. A. J. G. Hey e R. W. Allen (Addison-Wesley, 1997)

INSTITUTO DE FÍSICA "GLEB WATAGHIN"

PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

- [2] M. A. Nielsen e I. L. Chuang, Quantum Computation and Quantum Information(Cambridge University Press, Cambridge, 2000).
- [3] J. Preskill e A. Kitaev, Quantum Information and Computation(não publicado,1998); diponível online em http://www.theory.caltech.edu/~preskill/ph229.
- [4] D. Bouwmeester, A. Ekert, A. Zeilinger (eds.), The Physics of Quantum Information (Springer, Berlin, 2000).
- [5] Emmanuel Desurvire, Classical and Quantum Information Theory: An Introduction for the Telecom Scientist (Cambridge University Press, 2009).
- [6] Notas de Aula
- [7] Artigos Fundamentais da Área.

Observações

email: marcos@ifi.unicamp.br