

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE FÍSICA "GLEB WATAGHIN"

LINICAMP

DISCIPLINAS ELETIVAS 2º Semestre / 2017

DISCIPLINA PÓS	NOME
FI216	Tópicos Física Experimental

DISCIPLINA GRAD.	NOME
F 015	Tópicos de Física Aplicada V – Técnicas Experimentais Avançadas de Física de Superfícies

Horas Semanais						
Teóricas	Práticas	Laboratório	Orientação	Distância	Estudo em Casa	Sala de Aula
002	000	000	000	000	000	002
Nº semanas	Carga horária total		Créditos	Exame	Frequência	Aprovação
15	30		02	S	75%	N

Horário Proposto: Quinta-feira 14:00 - 16:00

Ementa: Introdução: do sólido à superfície. Instrumentação de ultra-alto vácuo. Espectroscopia de elétrons e análise química. Adsorção, desorção e reação química. Estrutura atômica de superfície. Estrutura eletrônica de superfícies.

Objetivos: Esta disciplina tem o objetivo de introduzir as principais técnicas de estudo de superfícies abordando aspectos fundamentais e aplicações. Em particular será dado enfase às espectroscopias baseadas na emissão de elétrons (fotoemissão e recombinação Auger: XPS (Espectroscopia de fotoemissão), AES (Espectroscopia de elétrons Auger), ARPES (Angle Resolved Photoelectron Spectroscopy). Será dado enfase ao estudo da estrutura eletrônica de materiais. O curso também abordará aspectos experimentais para o estudo da estrutura atômica de superfície apresentando alguma técnicas consagradas baseadas em difração de elétrons: LEED (Difração de elétrons lentos) e PED (Difração de fotoelétrons); bem como microscopia de varedura por tunelamento (STM).

Pré-Requisito na Graduação (se houver): É recomendado ao aluno de graduação ter completado Estrutura da Matéria (F 589) ou equivalente.

Programa:

- Aula 1: Introdução: do sólido à superfície
- Aula 2: Introdução à instrumentação de ultra-alto vácuo.
- Aula 3: Introdução à espectroscopia de elétrons
- Aula 4: Espectroscopia de elétrons para análise química
- Aula 5: Adsorção, desorção e reações químicas em superfícies.
- Aula 6: Estrutura eletrônica: ARPES (Angle resolved Photoelectron Spectroscopy).
- Aula 7: Avaliação P1
- Aula 8: Estrutura de superfícies. Técnicas de espaço recíploco (difração de elétrons)
- Aula 9: Aplicação de difração de fotoelétrons
- Aula 10: Introdução à técnica de microscopia de tunelamento de elétrons (STM)
- Aula 11: Aplicações de STM.
- Aula 12: Execusão de um experimento envolvendo as técnicas abordadas na disciplina.
- Aula 13: Técnicas espectroscópicas com STM.
- Aula 14: Seminários
- Aula 15: Avaliação P2. Entrega do relatório.

EMISSÃO: 17 de July de 2017

PÁGINA: 1 de 2

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE FÍSICA "GLEB WATAGHIN"

LINICAME

DISCIPLINAS ELETIVAS 2º Semestre / 2017

Critérios de Avaliação (alunos de Graduação): A nota de aproveitamento será calculada como A=(P+S+T)/3 onde P será a média de P1 e P2 (duas provas baseadas em listas de exercícios, conceituais e abordados em sala de aula). S será a avaliação da apresentação/arguição de um seminário (em grupo) baseado em um tópico relacionado à disciplina. T será a nota baseada em um relatório de um experimento realizado pelos alunos.

A frequência mínima será de 75%.

A>= 7.0 (aprovado). A=NF (NF= Nota Final) Se A<7.0 → Exame baseado em uma arguição.

NF= (A+E)/2. Se NF >= 5.0, aprovado.

Critérios de Avaliação (alunos de Pós-Graduação, no caso de oferecimento conjunto entre Graduação e Pós): Avalição será A, B, C, e D.

Bibliografia:

- 1- Surface Physics: An Introduction, Written and published by Philip Hofmann (www.philiphofmann.net)
- 2- Photoelectron Spectroscopy Principles and Applications, Stefan Hüfner, 2nd Edition, Springer.
- 3- Introduction to Scanning Tunneling Microscopy (2nd Edition), C. Julian Chen, Oxford University Press.
- 4- Notas de Aula.

Observações: Esta disciplina acompanha FI216

EMISSÃO: 17 de July de 2017

PÁGINA: 2 de 2