PRINCÍPIOS DE COMPUTAÇÃO QUÂNTICA INTRODUÇÃO AOS CONCEITOS FUNDAMENTAIS E PERSPECTIVAS DE IMPLEMENTAÇÃO COM DISPOSITIVOS SUPERCONDUTORES

MARCOS C. DE OLIVEIRA UNICAMP

EI-IFGW - 2015

SIMULAÇÃO DE SISTEMAS QUÂNTICOS

Richard Feynman (1981):

"...trying to find a computer simulation of physics, seems to me to be an excellent program to follow out...and I'm not happy with all the analyses that go with just the classical theory, because *nature isn't classical*, dammit, and if you want to make a simulation of nature, you'd better *make it quantum mechanical*, and by golly it's a wonderful problem because it doesn't look so easy."

CPU Transistor Counts 1971-2008 & Moore's Law

TRÊS QUESTÕES BÁSICAS

1. O QUE É INFORMAÇÃO?

"PROCESSAMENTO DE INFORMAÇÃO: AQUISIÇÃO, GRAVAÇÃO, ORGANIZAÇÃO, EXTRAÇÃO E DISSEMINAÇÃO DE DADOS." (ENC. BRITÂNICA)

2. O QUE É COMPUTAÇÃO?

"Computar: Desenvolver rotinas de cálculo automaticamente." (Enc. Britânica)

$$f: \{0,1\}^n \to \{0,1\}$$

3. O QUE É MECÂNICA QUÂNTICA?

"FORMALISMO MATEMÁTICO PARA O DESENVOLVIMENTO DE TEORIAS FÍSICAS."

4

Computação Quântica

TEORIA DE COMPUTAÇÃO

Computadores atuam como uma Sequência de Procedimentos Primitivos (SPP)

Seja um ábaco, ou um supercomputador de última geração, seu funcionamento via a SPP é basicamente o mesmo, independentemente do conjunto de elementos físicos que o constituem.

∀ *SPP* é efetuada por um conjunto finito de elementos básicos universais.

7

O que é computável e o que não é?

Existem duas maneiras diferentes, mas equivalentes, de respondermos essa questão:

- modelo de máquina de Turing
- modelo de circuitos

<u>Procedimentos efetivos</u> são o conjunto de regras para a realização de uma tarefa, também conhecido como *Algoritmo*. Ex.: Dado *x* calcule *e^x*

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots$$
 (1)

- Substitua o valor de *x*;
- Calcule cada termo;
- Some os termos \Rightarrow Resultado para qualquer x.

São definidos como *problemas computáveis* aqueles que podem ser resolvidos por um procedimento efetivo.

CONCEITO PRECISO DE COMPUTABILIDADE ALAN TURING (1936)

Se uma tarefa pude ser realizada por um procedimento efetivo, então ela pode ser realizada por uma *Máquina de Turing Universal* e vice-versa, se uma máquina de Turing universal não puder resolver um problema, então não há um procedimento efetivo.

MÁQUINA DE TURING

Máquina de Turing = Máquina de estado Finito + Memória Ilimitada

- Leitura da Célula ightarrow estímulo S
- Estado interno ightarrow Q
- Estado interno após estímulo ightarrow Q' = F(Q,S)
- Resposta (escrita na célula) ao estímulo $(+movimento da MEF \rightarrow R = G(Q, S))$

Função Computável \Leftrightarrow Função computável por uma máquina de Turing

"F(x) é Turing-computável se \exists uma máquina de Turing \mathbb{T}_F tal que se x for escrito na fita (da máquina) ela eventulamente para com F(x)impresso na fita."

$x \longrightarrow F(x)$

"A classe de funções computáveis por uma máquina de Turing corresponde exatamente à classe de funções computáveis por um algoritmo."

MODELO DE CIRCUITOS

Circuito

Fios (linhas) e portas, que carregam e manipulam a informação, realizando tarefas computacionais simples (individualmente) e que quando combinados permitem o cálculo de qualquer função F(x) computável.

Um computador (determinístico) é compreendido dentro do modelo de circuitos como o conjunto de elementos básicos universais necessários para computar a função:

$$F: \{0,1\}^n \longrightarrow \{0,1\}^m, \tag{2}$$

dado um input de *n*-bits ele produz um output de *m*-bits univocamente.

Uma função com *m*-bit valores de output é equivalente a *m*-funções com cada uma produzindo um bit de output.

$$F: \{0,1\}^n \longrightarrow \{0,1\}. \tag{3}$$

 2^n possíveis inputs, cada um $\rightarrow 2$ possíveis outputs.

 $\rightarrow \exists$ ao todo 2^{2^n} funções levando *n*-bits a 1-bit.

A avaliação de qualquer uma destas funções pode ser reduzida a uma sequência de **elementos básicos universais.**

<u>Definição</u> : *Uma computação é uma sequência finita de operações elementares fundamentais (um circuito) aplicada a uma palavra de bits de input*.

Dizemos que o conjunto de **elementos básicos fundamentais são universais**, a partir do qual, funções abitrariamente complexas podem ser computadas.

A classe de funções computáveis por uma família de circuitos uniforme é exatamente a mesma que as que podem ser computáveis por uma máquina de Turing.

XOR (Exclusive OR)

bit A A 0 0 1 1 FANOUT A A COPY A 0 0 0 1 1 1 NOT A ¬A 0 1 1 0 AND A B 0 0 0 1 1 0 A^B 0 0 0 1 1 1 OR A B 0 0 0 1 A∨ B Û 1 1 Û 1 1 1 1 NAND A B 0 0 0 1 --- (A∧B) 1 1 1 0 1 1 1 Û NOR A B ¬ (A∨ B) 0 0 1 0 1 0 1 0 Û 1 1 Û

Representação

Meio Somador (HALF-ADDER)

PROBLEMAS DE DECISÃO E COMPLEXIDADE COMPUTACIONAL

Polinomial (P):

- Podem ser resolvidos por algum algoritmo em tempo polinomial

Ex.: Soma, ordenação, etc.

Non-deterministic polinomial (NP):

- Não podem ser resolvidos por algum algoritmo em tempo polinomial
- Podem ser conferidos em tempo polinomial.
 - Ex.: Decomposição em fatores primos, procura, etc

SISTEMAS QUÂNTICOS

O QUE HÁ DE ESPECIAL NA FÍSICA QUÂNTICA?

Divisor de Feixes (DF): 1 fóton apenas

O QUE HÁ DE ESPECIAL NA FÍSICA QUÂNTICA?

Divisor de Feixes (DF): 1 fóton apenas

<u>Explicação tentativa</u>: O DF atua como uma moeda clássica, enviando o fóton aleatoriamente para uma porta ou outra.

Mas experimentalmente:

Mas experimentalmente:

Explicação tentativa:

O DF atua como uma moeda clássica, enviando o fóton aleatoriamente para uma porta ou outra.

Mas experimentalmente:

POSTULADO 1: ESPAÇO DE ESTADOS

 $|\psi\rangle \in \mathbb{C}^n$

POSTULADO 1: ESPAÇO DE ESTADOS

 $|\psi\rangle \in \mathbb{C}^n$

POSTULADO 2: EVOLUÇÃO DE SISTEMAS QUÂNTICOS

 $\frac{d}{dt}|\psi\rangle = -\frac{i}{\hbar}H|\psi\rangle$

POSTULADO 1: ESPAÇO DE ESTADOS

 $|\psi\rangle \in \mathbb{C}^n$

Postulado 2: Evolução de Sistemas Quânticos $\frac{d}{dt}|\psi\rangle = -\frac{i}{\hbar}H|\psi\rangle$

POSTULADO 3: MEDIÇÕES QUÂNTICAS

POSTULADO 1: ESPAÇO DE ESTADOS

 $|\psi\rangle \in \mathbb{C}^n$

 $\frac{d}{dt}|\psi\rangle = -\frac{i}{\hbar}H|\psi\rangle$

POSTULADO 2: EVOLUÇÃO DE SISTEMAS QUÂNTICOS

POSTULADO 3: MEDIÇÕES QUÂNTICAS

POSTULADO 4 - SISTEMAS COMPOSTOS

S Aparato de Medição

 $|\chi_{12}\rangle \in \mathbb{C}^n \otimes \mathbb{C}^n$

Postulados da Mecânica Quântica

POSTULADO 1: ESPAÇO DE ESTADOS

 $|\psi\rangle\in\mathbb{C}^n$

 $\frac{d}{dt}|\psi\rangle = -\frac{i}{\hbar}H|\psi\rangle$

POSTULADO 2: EVOLUÇÃO DE SISTEMAS QUÂNTICOS

POSTULADO 3: MEDIÇÕES QUÂNTICAS

POSTULADO 4 - SISTEMAS COMPOSTOS

 $|\chi_{12}\rangle \in \mathbb{C}^n \otimes \mathbb{C}^n$

Existem sistemas compostos cujo estados parciais não podem ser descritos por: $|\psi_i\rangle$.

Ex.: $|\chi_{12}\rangle = a |\psi_1\rangle |\psi_2\rangle + b |\phi_1\rangle |\phi_2\rangle$. ESTADOS EMARANHADOS Não existe decomposição de $|\chi_{12}\rangle = |\chi_1\rangle \otimes |\chi_2\rangle$: $|\chi_1\rangle$ - Estado do sistema 1 e $|\chi_2\rangle$ - Estado do sistema 2.

ELEMENTOS DE COMPUTAÇÃO QUÂNTICA

ELEMENTOS DE COMPUTAÇÃO QUÂNTICA

Qubit: $|\Psi\rangle = a|0\rangle + b|1\rangle$

ELEMENTOS DE COMPUTAÇÃO QUÂNTICA

Qubit:
$$|\Psi\rangle = a|0\rangle + b|1\rangle$$

 $a = \cos\frac{\theta}{2}; b = e^{i\varphi} \sin\frac{\theta}{2}$

Esfera de Bloch

Qubit:
$$|\Psi\rangle = a|0\rangle + b|1\rangle$$

 $a = \cos\frac{\theta}{2}; b = e^{i\varphi}\sin\frac{\theta}{2}$

Esfera de Bloch

Qubit:
$$|\Psi\rangle = a|0\rangle + b|1\rangle$$

 $a = \cos\frac{\theta}{2}; b = e^{i\varphi} \sin\frac{\theta}{2}$

Esfera de Bloch

Operações de 1-qubit

Operações de Pauli $x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \quad y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}; \quad z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Qubit:
$$|\Psi\rangle = a|0\rangle + b|1\rangle$$

 $a = \cos\frac{\theta}{2}; b = e^{i\varphi} \sin\frac{\theta}{2}$

Esfera de Bloch

Operações de 1-qubit

Operações de Pauli $x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \quad y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}; \quad z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ Hadamard

$$H |0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}; \quad H |1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}; \quad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$

Qubit:
$$|\Psi\rangle = a|0\rangle + b|1\rangle$$

 $a = \cos\frac{\theta}{2}; b = e^{i\varphi} \sin\frac{\theta}{2}$

Esfera de Bloch

Operações de 1-qubit

Operações de Pauli $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}; \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ Hadamard $H |0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}; \quad H |1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}; \quad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$ Fase $P|0\rangle = |0\rangle; P|1\rangle = e^{i\phi}|1\rangle; P = \begin{bmatrix} 1 & 0\\ 0 & e^{i\phi} \end{bmatrix}$

Operações de 1-qubit

Operações de Pauli

 $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}; \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Hadamard

Qubit:
$$|\Psi\rangle = a|0\rangle + b|1\rangle$$

 $a = \cos\frac{\theta}{2}; b = e^{i\varphi} \sin\frac{\theta}{2}$

Esfera de Bloch

С	t	С	
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

Porta Control-not (CNOT) (2-qubits)

С	t	С	
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

24

 $= |0\rangle|1\rangle$

ALGORITMOS

- Problema de Bernstein-Vazirani e complexidade exponencial
- Problema de Simon Período de função
- Algoritmo de Shor (Decomposição em potências de fatores primos)
- Algoritmo de Busca de Grover

$$|\psi\rangle = a|0\rangle + b|1\rangle, a, b?$$

$$|\Psi\rangle_{T} = a|0\rangle_{T} + b|1\rangle_{T} : a, b?$$

Figure : Transmissão de informação quântica por canal quântico.

Figure : Transmissão de informação quântica por canal quântico.

IMPLEMENTAÇÃO

REQUISITOS (DIVINCENZO)

Locais

- Caracterizar um sistema escalável com conjunto bem definido de estados quânticos para serem utilizados como qubits;
- Preparar estados puros apropriados neste conjunto (inicialização);
- Realizar evoluções quânticas requeridas (portas universais);
- Tempo de decoerência longo o suficiente para realizar computação;
- Leitura dos resultados;

Não-locais

- Conectividade;
- Transmissão a longa distância (flying qubits),

 $|t \oplus c\rangle$

DECOERÊNCIA

Porta Control-not (CNOT)

DECOERÊNCIA

Porta Control-not (CNOT)

$$\begin{aligned} |c\rangle &= a|0\rangle_{c} + b|1\rangle_{c} \\ |t\rangle &= |0\rangle_{t} \\ |c\rangle|t\rangle &= a|0\rangle_{c}|0\rangle_{t} + b|1\rangle_{c}|0\rangle_{t} \Rightarrow a|0\rangle_{c}|0\rangle_{t} + b|1\rangle_{c}|1\rangle_{t} \\ \rho_{c} &= |c\rangle\langle c| = |a|^{2}|0\rangle\langle 0|_{c} + |b|^{2}|1\rangle\langle 1|_{c} + a^{*}b|1\rangle\langle 0|_{c} + ab^{*}|0\rangle\langle 1|_{c} \\ \rho_{ct} &= |c,t\rangle\langle c,t| = |a|^{2}|0,0\rangle\langle 0,0| + |b|^{2}|1,0\rangle\langle 1,0| + a^{*}b|1,0\rangle\langle 0,0| + ab^{*}|0,0\rangle\langle 1,0| \\ \Rightarrow \rho_{ct}^{'} &= |a|^{2}|0,0\rangle\langle 0,0| + |b|^{2}|1,1\rangle\langle 1,1| + a^{*}b|1,1\rangle\langle 0,0| + ab^{*}|0,0\rangle\langle 1,1| \end{aligned}$$

$$\rho_{ct} = |a|^{2} |0,0\rangle \langle 0,0| + |b|^{2} |1,1\rangle \langle 1,1| + a^{*}b|1,1\rangle \langle 0,0| + ab^{*}|0,0\rangle \langle 1,1|$$

$$\rho_{ct} = |a|^{2} |0,0\rangle \langle 0,0| + |b|^{2} |1,1\rangle \langle 1,1| + a^{*}b|1,1\rangle \langle 0,0| + ab^{*}|0,0\rangle \langle 1,1|$$

$$\rho_{cmix} = p_0 |0\rangle \langle 0|_c + p_1 |1\rangle \langle 1|_c$$

$$|t\rangle = |0\rangle_t$$

$$\rho_{ctmix} = |c,t\rangle \langle c,t| = p_0 |0,0\rangle \langle 0,0| + p_1 |1,0\rangle \langle 1,0|$$

$$\Rightarrow \rho'_{ctmix} = p_0 |0,0\rangle \langle 0,0| + p_1 |1,1\rangle \langle 1,1|$$

Interações mais fracas Interações mais fortes

DECOERÊNCIA

DECOERÊNCIA

ACESSIBILIDADE
ACESSIBILIDADE

	itação stência es a nie						
	olubi	inici	ar de	50° 00	gate le	ture tran	St. X.
NMR							
Íons Aprisionados							
Átomos em Cavidades							
Óptica							
Semicondutores							
Supercondutores							

Há um procedimento viável suficientemente comprovado

Há um procedimento viável, mas não suficientemente comprovado

Não há procedimento viável conhecido.

CIRCUITOS SUPERCONDUTORES

- Acoplamento forte com o meio- tempo de coerência curto
- Acoplamento qubit-qubit forte portas rápidas
- Fácil acesso via sinais elétricos
- Facilmente projetada com capacitores, indutores e junções Josephson
- Fácil de fabricar e integrar

CIRCUITOS SUPERCONDUTORES

- Acoplamento forte com o meio- tempo de coerência curto
- Acoplamento qubit-qubit forte portas rápidas
- Fácil acesso via sinais elétricos
- Facilmente projetada com capacitores, indutores e junções Josephson
- Fácil de fabricar e integrar

Qubit de Carga

Nakamura..., Nature (1999)

Qubit de Fluxo

Mooij, Orlando..., Science (1999)

QUBIT DE CARGA

$$E_J \Longrightarrow 2E_J cos\left(\pi \frac{\Phi_x(t)}{\Phi_0}\right)$$

R. J. Schoelkopf and S. M. Girvin, Yale

512-qubit D-Wave TwoTM quantum computer

'Rose's law

Quantum AI Google+ page, Google Research Blog

Wired, Wall Street Journal, IEEE Spectrum, MIT Tech Report

State preservation by repetitive error detection in a superconducting quantum circuit

RESUMO

- Computação quântica é mais eficiente do que a computação clássica para resolver certos problemas.
 É mais eficiente para o desenvolvimento de simuladores universais.
- Muito mais eficiente para desenvolvimento de simuladores dedicados.
- Sistemas supercondutores oferecem grandes perspectivas para implementação de computadores quânticos, universais ou dedicados.

QUANTUM INFORMATION THEORY

OUTLINE

- Coupling of electromechanical resonator to transmission line radiation
- QND phonon number detection and phonon number dependent beam-splitter
- Phonon-number statistics though pulsed linear detection scheme.

Temperature Measurement and Phonon Number Statistics of a Nanoelectromechanical Resonator

O. P. de Sá Neto^{1,2}, M. C. de Oliveira² and G. J. Milburn³ ¹ Coordenação de Ciência da Computação, Universidade Estadual do Piauí, CEP: 64202220, Parnaíba, Piauí, Brazil. ² Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil. and ³ Centre for Engineered Quantum Systems, School of Mathematics and Physics., University of Queensland, QLD 4072, Brisbane, Australia.

Electromechanical Resonators

 $\hbar\nu > k_B T$

A. Gaidarzhy et al., Phys. Rev. Lett. 94, 030402 (2005); 95, 248902 (2005); K. C. Schwab et al., ibid. 95, 248901 (2005); R. L. Badzey and P. Mohanty, Nature (London) 437, 995 (2005); W. K. Hensinger et al., Phys. Rev. A 72, 041405(R) (2005); M. D. LaHaye et al., Science 304, 74 (2004); X. M. H. Huang et al., Nature (London) 421, 496 (2003); R. G. Knobel and A. N. Cleland, Nature (London) 424, 291 (2003).

Capacitive coupling of two transmission line resonators mediated by an electromechanical oscillator

$$\mathcal{H} = \frac{1}{2} \sum_{i=1}^{2} \left(\frac{1}{L_{i}} P_{i}^{2} + \frac{1}{\widetilde{C}_{i}} Q_{i}^{2} \right) + \frac{\left(d^{2} - x^{2}(t) \right)}{2d\epsilon_{0}A} Q_{1}Q_{2} - \sum_{i=1}^{2} \left[\frac{\left((-1)^{i}d + x(t) \right)}{2d} V_{C_{T}}(t) \right] Q_{i},$$

$$x^{2}(t) = \frac{\hbar}{2m\nu} (b^{2}e^{-i2\nu t} + (b^{\dagger})^{2}e^{i2\nu t} + 2b^{\dagger}b + 1)$$

$$H_{\rm int}^{I} = \hbar \left(\theta_0 + \theta b^{\dagger} b\right) \left(a_1^{\dagger} a_2 + a_1 a_2^{\dagger}\right)$$

O. P. de Sá Neto, M. C. de Oliveira, F. Nicacio, and G. J. Milburn, Phys. Rev. A 90, 023843 (2014)

Capacitive coupling of two transmission line resonators mediated by an electromechanical oscillator

(i)
$$H_I = -\hbar\alpha(t)b^{\dagger}b(a + a^{\dagger})$$
 (ii) $H_I = \hbar\theta b^{\dagger}b\left(a_1^{\dagger}a_2 + a_1a_2^{\dagger}\right)$
(i) $H_I = \hbar\theta b^{\dagger}b\left(a_1^{\dagger}a_2 + a_1a_2^{\dagger}\right)$
 $n_b=3$
 $n_b=1$
 $(\Gamma+\kappa_1)t/2$ (arb. units)

O. P. de Sá Neto, M. C. de Oliveira, F. Nicacio, and G. J. Milburn, Phys. Rev. A 90, 023843 (2014)

TEMPERATURE Measurement

Laser cooling of a nanomechanical oscillator into its quantum ground state

J. Chan, T. P. Mayer Alegre, A H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, O.Painter, Nature 478, 89-92 (2011)

$$H_I = -\hbar\alpha(t)b^{\dagger}b(a+a^{\dagger}) \qquad H_p = -i\hbar\frac{\gamma}{2}(a^2-a^{\dagger 2})$$

$$\rho(0) = \sum_{n=0}^{\infty} P(n) |n\rangle \langle n|_{b} \otimes |0\rangle \langle 0|_{a}$$

$$H_p = -i\hbar\frac{\gamma}{2}(a^2 - a^{\dagger 2})$$

$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & i & 0 \\ 1 & 0 & 0 & i \\ i & 0 & 0 & 1 \\ 0 & i & 1 & 0 \end{bmatrix}$$

$$\rho(0) = \sum_{n=0}^{\infty} P(n) \left| n \right\rangle \left\langle n \right|_{b} \otimes \left| 0 \right\rangle \left\langle 0 \right|_{a}$$

$$egin{aligned} & (au) = \sum_{n=0}^{\infty} P(n) \left| n \right\rangle \left\langle n \right|_{b} \otimes \left| lpha_{n}, \gamma \right\rangle \left\langle lpha_{n}, \gamma \right|_{a} \ & \mathbf{f}^{t_{2}} \end{aligned}$$

$$\alpha_n(\tau) = i n \int_0^{\tau_2} \alpha(t) dt \equiv i n A$$

$$|\alpha_n, \gamma\rangle_a = \mathcal{D}(\alpha_n)\mathcal{S}(\gamma) |n, 0\rangle$$

$$\mathcal{D}(\alpha_n) = \exp\left[inA(a+a^{\dagger})\right]$$
$$\mathcal{S}(\gamma) = \exp\left[(\gamma t_1/2)(a^{\dagger 2}-a^2)\right]$$

D

POST-SELECTED STATE

$$\rho_a^{(m)}(\tau) = \frac{Tr_b \left\{ \Pi_m \rho(\tau) \Pi_m \right\}}{Tr_{ab} \left\{ \Pi_m \rho(\tau) \Pi_m \right\}}$$

$$Tr_{ab} \{\Pi_m \rho(\tau) \Pi_m\} = P(m); \quad \Pi_m = |m\rangle \langle m|_b$$

$$\langle Y \rangle_{(m)} (\tau) = \langle \alpha_m, \gamma | Y | \alpha_m, \gamma \rangle$$

$$\left\langle (\Delta Y)^2 \right\rangle_{(m)} (\tau) = e^{-2\gamma t_1}.$$

PRE-SELECTED STATE

$$\rho_a(\tau) = \sum_m P(m)\rho_a^{(m)}(\tau)$$

$$\langle Y \rangle (\tau) = \sum_{m} P(m) \langle Y \rangle_{(m)} (\tau) = Tr \left\{ i \left(a^{\dagger} - a \right) \rho(\tau) \right\} = 2AN$$

$$\left\langle (\Delta Y)^2 \right\rangle = 4A^2 N \left(N + 1 \right) + \left\langle (\Delta Y)^2 \right\rangle_{(m)} (\tau)$$

$$T = \hbar \nu / [k_B \ln (N^{-1} + 1)]$$

$$\gamma t_1 > -ln[\sqrt{2A}]$$

PRE-SELECTED STATE

$$\rho_a(\tau) = \sum_m P(m)\rho_a^{(m)}(\tau)$$

$$\langle Y \rangle (\tau) = \sum_{m} P(m) \langle Y \rangle_{(m)} (\tau) = Tr \left\{ i \left(a^{\dagger} - a \right) \rho(\tau) \right\} = 2AN$$

$$/(AV)^{2} = AA^{2} N (N + 1) + /(AV)^{2} = (-)$$

$$\left\langle (\Delta Y)^2 \right\rangle = 4A^2N\left(N+1\right) + \left\langle (\Delta Y)^2 \right\rangle_{(m)}(\tau)$$

 $T = \hbar \nu / [k_B \ln (N^{-1} + 1)]$

Wigner distribution

CONCLUSIONS

• Reliable method for phonon number QND measurement.

• Access to the mechanical resonator statistics.