

XXVII OFICINA DE FÍSICA RAIOS-X E APLICAÇÕES

DIFRAÇÃO DE RAIOS-X : DOS SEUS PRIMÓRDIOS ÀS APLICAÇÕES RECENTES NO ESTUDO DE MATERIAIS

Prof. LISANDRO PAVIE CARDOSO LPCM, DFA, IFGW, UNICAMP

XXVII OFICINA DE FÍSICA RAIOS-X E APLICAÇÕES

Introdução histórica – descoberta dos raios-X Cristais – estruturas, planos atômicos, índices de Miller Produção de raios-X Lei de Bragg e difratometria de policristais Método de Rietveld com aplicações: Arquitetura (prédios históricos) Alimentos (polimorfismo, cristalização de gorduras) Difração múltipla de raios-X Difração Bragg-Superfície (BSD) - híbridas Aplicação como sonda para: a piezeletricidade a transição de fase por temperatura (dilatometria) impurezas nas redes cristalinas a implantação de íons

Introdução histórica

Descoberta dos raios-X (1895)

Wilhelm Conrad Röntgen - raios catódicos (<1 ano: 49 livros e 1.000 artigos) Nobel,1901

Natureza dos raios-X

G.G. Stokes → ondas (difração)
W.H. Bragg → corpuscular
(ionização gases – colisão entre partículas)

Primeiras experiências científicas

Max von Laue (Nobel, 1914), Walter Friedrich — Estrutura regular dos cristais Paul Knipping (Univ. Munique, Alemanha, 1912) natureza ondulatória

W. H. Bragg e W.L. Bragg →
(Nobel, 1915)Determinação estruturas cristalinas
com difração de raios-X

Radiografia de uma mão e W.C. Röntgen (Nobel,1901)

Thomas Edison (4 meses após a descoberta)

X = Ray = Apparatus

of All Kinds,

For Professionals and Amateurs. 444

THE EDISON APPROACH to x rays. This advertisement appeared in *Electrical Engineer* only four months after the announcement of Röntgen's discovery.

REDES DE BRAVAIS

As 14 redes de Bravais distribuídas segundo os 7 Sistemas Cristalinos

Cristais e suas estruturas

Cristais são arranjos atômicos ou moleculares cuja estrutura se repete num a forma periódica tridimensional

Célula unitária do NaCl

Célula unitária é a menor estrutura que representa um cristal, isto é, um cristal é formado por diversas células unitárias arranjadas tridimensionalmente

Planos atômicos

Plano (200) do NaCl

Plano (220) do NaCl

•Os planos atômicos são usados para definir direções e distancias no cristal.
• Planos cristalinos são identificados por Índices de Miller

ESPECTRO ELETROMAGNÉTICO

Ilustração da geração dos dois tipos de espectro de radiação X

Radiação contínua

Radiação característica

Espectro característico de raios-X

Tubo de difração de raios-X selado

Geometrias do foco de raios-X no tubo

Gerador de raios-X de Anodo rotatório

Radiação síncrotron Laboratório de Daresbury, Warrington, Inglaterra

Representação de difratogramas obtidos

Padrão para análise de difração de policristais

1	48-1152					Quality: Indexed
2	Li0.6 V1.67 O3.61 Lithium Vanadium	7 ! H2 O Oxide Hydrate				
) (Rad:CuKal	Lambda:1.54056	Filter:			d sp:Diffractometer
ઝ	Cutoff: Ref:Whittingham,	Int:Diffractometer M., SUNY at Bingham	I/Icor: iton, Mate	rialsResearch Center, N	NY, USA.Chy	rayil, T., Zavalij, P., Whittingham, M., (1
	Sys:Tetragonal	L.		S.G.:14/mmm		
4	a:5.7047±0.0005 α: Ref2	D: β:		c:15.804±0.002 γ	Z :2	mp
	Dx:2.53	Dm:2.541		SS/FOM: F30=46.5(0	0.0161,40)	Volume[CD]:216.91
5	εα: Ref3	ηωβ:		εγ:	Sign:	2V:
6	Color:					
\mathcal{T}	Prepared by hydro for 3 days at 200 (thermal treatment of t C. Pattern taken at 23(etramethy 1) C.	lammonium hydroxide/	e, vanadium po	entoxide and \Li O H\ acidified to pH 2-5

32 reflections in pattern.

	2.θ	Int.	h	k	1	2.0	Int.	h	k	1	2 0	Int.	h	k	1	2.θ	Int.	h	k	1
8	11.2026	100	0	0	2	50.5721	8	0	2	2	72.0262	4	2	2	- 0	83.7228	1	0	1	13
	22.4967	19	0	0	4	54.6668	3	0	2	4	73.1843	2	2	2	2	84.1343	1	0	3	5
	24.6618	9	0	1	1	55.7443	2	1	2	1	76.5173	1	2	2	4					
	29.4652	50	0	1	3	58.0669	3	0	1	9	77.4598	1	0	3	1					
	33.9955	1	0	0	6	58.3367	13	1	2	3	79.4091	2	1	2	9					
	34.2095	14	1	1	0	58.3367	13	0	0	10	79.6864	4	0	3	- 3					
	36.0710	1	1	1	2	58.4543	4	1	1	8	79.6864	4	0	2	10					
	37.3772	4	0	1	5	63.3383	3	1	2	5	81.7407	2	1	1	12					
	47.1058	19	0	1	7	69.4008	10	1	1	10	82.1813	2	1	3	- 0					
	49.1443	16	0	2	0	70.4377	7	1	2	7	83.3159	1	1	3	2					

l

Difração de raios-X (filme fino) - geometria rasante

Fórmula de Scherrer

$$t = \frac{K * \lambda}{B * \cos \theta_{\rm B}}$$

t =tamanho de cristalito K =constante dependente do formato de cristal (0.89) $\lambda =$ comprimento de onda dos raios-X B =FWHM (largura a meia altura do pico) $\theta_{\rm B} =$ ângulo de Bragg

Método Rietveld

Intensidade das reflexões de Bragg:

$$I_{k} = SM_{k}L_{k}|F_{k}|^{2}P_{k}$$

$$\begin{split} S &= Fator \ de \ escala \\ M_k &= Fator \ de \ multiplicidade \\ L_k &= Fator \ de \ polarização \ de \ Lorentz \\ |F_k|^2 &= Fator \ de \ estrutura \\ P_k &= Orientação \ preferencial^* \end{split}$$

^{*} Se não houver orientação preferencial, $P_k = 1$.

Método Rietveld

Fator de estrutura:

$$F_{k} = \sum_{j=1}^{n} f_{j} \exp\left[2\pi i \left(h_{r}^{t} r_{j} - h_{k}^{t} B_{j}\right)\right]$$

$$\begin{split} f_{j} &= fator \ de \ espalhamento \ atômico \ (varia \ com \ sen \theta/\lambda) \\ h_{k} &= matriz \ que \ representa \ os \ índices \ de \ Miller, \\ r_{j} &= coordenadas \ atômicas \\ B_{j\,=} \ vibração \ térmica \ anisotrópica \end{split}$$

Refinamento Rietveld - Parâmetros envolvidos

- ✓ Parâmetros de estrutura cristalina:
- coordenadas (x, y, z);
- fator de ocupação;
- parâmetro de rede (a, b, c)
- ângulo entre os vetores (α, β, γ) ;
- ✓ <u>Parâmetros de perfil:</u> largura das reflexões, assimetria e forma;
- ✓ <u>Parâmetros de intensidade:</u> fator de escala;
- ✓ Parâmetros de correção de orientação preferencial.

Método Rietveld

$$\mathbf{R}_{wp} = \mathbf{R}_{ponderado}$$
$$R_{wp} = \left[\frac{\sum W_i (y_{io} - y_{ic})^2}{\sum W_i y_{io}^2}\right]^{1/2}$$

Índice a ser analisado para ver se o refinamento está convergindo

Significado dos fatores R's

Como a intensidade integrada está relacionada com a

estrutura cristalina, o R_B é o índice a ser considerado para avaliar a qualidade do modelo refinado da estrutura cristalina.

$$R_{B} = \frac{\sum \left| I_{kc} - I_{kc} \right|}{\sum I_{ko}}$$

$$R_{\rm exp} = \left[\frac{N-P}{\sum w_i y_{ik}^2}\right]$$

Valor estatisticamente esperado para Rwp

$$S = \frac{R_{wp}}{R_{exp}}$$
 "Goodness of Fit"

$$\frac{\sum w_i (y_{io} - y_{ic})^2}{N - P} - \left[\frac{R_{wp}}{R_{exp}}\right]^2$$

N = número de pontos usados no refinamento P = número de parâmetros refinados

Refinamento Rietveld - MnAs

Resultados

MnAs- Hexagonal – P63/mmc

MnAs - Ortorrômbica - Pnma

Resultados MnAs -Transição de Fase

"Structural and magnetic study of the MnAs magnetocaloric compound", Nascimento, dos Santos, de Campos, Gama & Cardoso, Materials Research (2006) **9**(1),111-114

PRÉDIO DA ESTAÇÃO GUANABARA Campinas, São Paulo

2006 Centro Cultural de Inclusão e Integração Social (CIS-GUANABARA) da UNICAMP

Traços típicos encontrados em edifícios históricos: 1:1 e 1:2 (cal:areia) e 1:1:2 e 1:3:6 (cimento:cal:areia)

ANÁLISE DE ARGAMASSA EM PRÉDIOS HISTÓRICOS

REFINAMENTO RIETVELD – REVELANDO A PRESENÇA DE PORTLANDITA

Fig. 1 - Refinamento Rietveld para amostras argamassa. (a) Amostra típica de ambientes de 1893 a1915 (somente quartzo e calcita); (b) Amostra típica de 1960 (presença de quartzo, calcita, brucita e portlandita - setas); As respectivas composições relativas seguem logo abaixo.

Solução – açucares – Sais – amido –Lipídios em solvente orgânico

Exemplo: cristalização da sacarose

Nucleação

Os triacilgliceróis cristalizam-se nas formas polimórficas α , β ' ou β , embora a forma β seja a mais estável.

A forma β ' é o polimorfo de maior interesse para produção de alimentos ricos em gordura (margarinas, produtos de confeitaria e panificação).

A identificação das formas polimórficas foi realizada a partir das distâncias interplanares.

$$d = \lambda / (2 \operatorname{sen} \theta)$$

Microestrutura, Polimorfismo e propriedades de cristalização de gorduras Zero trans de óleo de soja puro (SO) e totalmente hidrogenado (FHSBO)

Ribeiro, Grimaldi, Gioielli, dos Santos, Cardoso & Gonçalves, Food Biophysics (2009) 4, 106

ESTUDO DE GORDURAS TRANS Óleo de canola + óleo de algodão totalmente hidrogenado

Ribeiro, Basso, Grimaldi, Gioielli, dos Santos, Cardoso, Gonçalves Food Research International (2009) **42**, 1153.

Difração de Raios-X: caso de 2 feixes

DIFRAÇÃO MÚLTIPLA DE RAIOS-X

DIFRAÇÃO MÚLTIPLA DE RAIOS-X (XRMD)

Vantagens

•Informação 3D simultânea na análise da rede cristalina.

•Alta sensibilidade às pequenas deformações na rede (simetria).

•Casos Difração Bragg-Superfície feixe secundário paralelo à superfície da amostra (interface).

Representação da Difração Bragg-Superfície (BSD)

Reflexões híbridas (SL e LS) em GaAs/Si(002)

Morelhão, Cardoso, Sasaki & de Carvalho, J. Appl. Phys. (1991) **70** (5), 2589

ENERGIA LIMPA SOB NOSSOS PÉS

Partículas de cerâmica nanométrica que compõem o material piezoelétrico

POLÍMERO -CERÂMICA (PZT)

PVDF (30-50%PZT – Tf~180oC)

Walter Sakamoto (Unesp-Iha Solteira) e Maria Aparecida Bertochi (Unesp-Araraquara) Fonte: Pesq. FAPESP (2010) 171, 75

Aplicações: pisos piezoelétricos (2008)

Casas noturnas (Londres e Roterdã) Estações de metrô em Tóquio Israel –aeroportos e rodovias Estimativa: 20 carros/min – 200 kW/h consumo (casa/mês)

Problema: armazenagem (baterias)

NO SAPATO O material poderia ser usado aínda nas solas dos sapatos. energia seria usada para carregar telefones celulares e tocadores de música de bolso

0,1 kW/passo (60 kg)

Fontes: Innowattec. Elson Longo, professor de físico-química da Universidade Estadual Paulista (Unesp), Walter Sakamoto, do Departamento de Física e Julmica da Faculdade de Engenharia de Ilha Solteira da Unesp

A superficie dotada de um material piezoelétrico recebe a pressão dos pés ou dos pneus de veículos

Ao ser pressionado, ele libera elétrons. transformando a energia mecânica em elétrica

> O que é gerado pode ser usado como uma fonte de energia: acender lâmpadas e ligar aparelhos. por exemplo

LPC - Oficina 2011

Fonte: Istoé, no 2114, pg.105 (19/05/2010)

DMRX: uma sonda para a piezeletricidade

- Pré-requisito: Ausência de um centro de simetria
- Efeito Direto: Tensão $(\sigma_{jk}) \rightarrow$ Polarização $\rightarrow P_i = d_{ijk} \sigma_{jk}$
- Efeito Inverso:

Campo (E_i) \rightarrow Distorção (ϵ_{jk}) $\rightarrow \epsilon_{jk} = d_{ijk} E_i$

*d*_{ijk} ≡ Coeficientes Piezelétricos

$$\vec{E}_{x} \begin{bmatrix} 100 \\ \vec{E}_{x} \\ \vec{E}_{y} \\ \vec{E}_{z} \end{bmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{pmatrix} \vec{E}_{z}$$

meta-Nitroanilina (mNA) ortorrômbico (*mm2*)

J.F.Nye in: "*Physical properties of crystals*" (Clarendon Press, Oxford, 1985).

Coeficiente piezoelétrico d₃₁ (mNA)

Avanci, Cardoso, Girdwood, Pugh, Sherwood & Roberts, Phys. Rev. Lett. (1998) **81**(24), 5426

APLICAÇÕES DO MÉTODO

mNA (C₆H₆N₂O₂) (ortorrômbico) (meta-Nitroanilina)

Phys. Rev. Lett. (1998) 81(24), 5426

 $\vec{E}_{x} \begin{pmatrix} [100] & [010] & [001] & [011] & [101] & [110] \\ 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ \vec{E}_{z} & 7,3(1) & 16,5(7) & 10,3(8) & 0 & 0 & 0 \end{pmatrix} x 10^{-11} NC^{-1}$

MBANP (C.,H.,N.O., (monoclínico)		[100]	[010]	[001]	[011]	[101]	[110]	
[(-)-2-(α -metilbenzilamina)-5-nitroniridina]	\vec{E}_{x}	0	0	0	$d_{14}^{}$	0	d_{16}	$-10^{-11} NC^{-11}$
	\vec{E}_{y}	0,2(1)	24,8(3)	1,3(1)	0	5,9(1)	0	
Phys. Rev. B (2000) 61 (10), 6507	\vec{E}	0	0	0	d_{34}	0	d_{36}	

Sal de Rochelle (monoclínico) (NaKC₄H₄O₆· 4H₂O) J. Phys: Cond. Matter (2003) **15**(46) 7835

	[100]	[010]	[001]	[011]	[101]	[110]	
\vec{E}_x	(0	0	0	23(3)	0	0.162(6))
\vec{E}_{y}	70(6)	220(90)	210(90)	0	3.7(8)	0	$\times 10^{-11} N/C$
Ē,	(0	0	0	78.2(3)	0	1.23(7))

DMRX: SONDA PARA TRANSIÇÃO DE FASE (TEMPERATURA) E DILATOMETRIA

Evidência experimental da influência da concentração de Mn³⁺ em KDP (KH₂PO₄)

Mapeamento da reflexão Bragg-Superfície (MBSD)

MBSD: sonda na implantação de íons Se⁺ em GaAs(002) - Reflexão BSD: $(000)(002)(111) - LPCM (CuK\alpha_1/\alpha_2)$

LPC - Oficina 2011 Hayashi, Avano

Hayashi, Avanci, Cardoso, Sasaki, Kretly & Chang, Appl. Phys. Lett. (1997) 71(18), 2614

MBSD: sonda na implantação de íons Fe⁺ em Si(001) Reflexão BSD: (000)(002)(111) - LNLS

MUITO OBRIGADO PELA ATENÇÃO!

cardoso@ifi.unicamp.br

